Matt Wheeler NIOSH/EID/REB

Acknowledgements

A. John Bailer
 Miami University/NIOSH

Outline

Outline

- Introduction/Motivation
- Model Averaging
- Simulation
- Conclusions/Future research

Introduction

- Given an experimental hazard data, we are frequently concerned with estimating a level of exposure, that corresponds to level of risk for the hazard of interest.
- This value, called the benchmark dose, is estimated based upon a chosen regression model.
- Multiple models are frequently available and often describe the data "equally."
- Even though these models describe the data similarly the models often characterize the risk at low levels of exposure differently.
- Yet decisions are made with one model in mind.

Introduction

- Consider the problem of estimating a benchmark dose (BMD) from dichotomous dose response data.
- Here we seek to estimate the BMD from a "plausible" model, given experimental data.
- In these experiments:
 - Animals are exposed to some potential hazard.
 - The adverse response is assumed to be distributed binomially.
 - Risk (i.e, probability of adverse response) is estimated using regression modeling.
 - Multiple dose-response models can be used to estimate risk.

Introduction

Common Dose-Response Models Used:

logistic model:
$$\pi_1(d) = \frac{1}{1 + \exp[-(\alpha + \beta d)]}$$
 (1)

■log-logistic model:
$$\pi_2(d) = \gamma + \frac{(1-\gamma)}{1 + \exp[-(\alpha + \beta \ln(d))]}$$
 (2)

gamma:
$$\pi_3(d) = \gamma + (1 - \gamma) \frac{1}{\Gamma(\alpha)} \int_0^{\beta d} t^{\alpha - 1} e^{-t} dt \qquad (3)$$

■multistage
$$\pi_4(d) = \gamma + (1 - \gamma) [1 - \exp(-\theta_1 d - \theta_2 d^2 ...)]$$
 (4)

■ probit
$$\pi_5(d) = \Phi(a + \beta d)$$
 (5)

Introduction

■log-probit
$$\pi_6(d) = \gamma + (1 - \gamma)\Phi[a + \beta \ln(d)]$$
 (6)

•quantal-quadratic
$$\pi_8(d) = \gamma + (1 - \gamma) \left[1 - \exp(-\beta d^2) \right] (8)$$

Weibull
$$\pi_9(d) = \gamma + (1 - \gamma) \left[1 - \exp(-\beta d^{\alpha}) \right]$$
 (9)

where $\Gamma(\alpha)$ = gamma function evaluated at α , for $\Phi(x)$ = CDF N(0,1) and $\pi_i = \gamma$ when d_i =0 for models (2) and (7).

Introduction

- Given data (in absence of mechanistic information), a typical analyst will:
 - Estimate the regression coefficients for models (1)-(9).
 - Estimate the BMD/BMDL given the model.
 - Pick the "best model."
- As uncertainty results from one given model, a different approach may be helpful.

Model Averaging

- A better way would be to find an adequate way to combine all estimates, and thus describe/account for model uncertainty.
- Model Averaging (MA) is a method that may satisfactorily account for model uncertainty.
- Instead of focusing on a single model it allows researchers to focus on "plausible behavior."

Model Averaging

- Given the fits of models (1)-(9) MA:
 - Calculates the dose-response based upon a weighted average of dose-responses Raftery et al. (1997), Buckland et al. (1997)
 - Estimates the MA dose-response curve as:

$$\pi_{\mathrm{MA}}(d) = \sum_{i=1}^{K} \pi_{i}(\mathbf{0}, d) \cdot w_{i}$$

– Weights are formed as:

$$w_j = \frac{\exp(-I_j/2)}{\sum_{i=1}^K \exp(-I_i/2)}$$

– Where I_i =AIC, I_i =KIC, or I_i =BIC. Other weights are possible.

Model Averaging

 Given this "Average-model," the benchmark dose is then computed by finding the dose that satisfies the equation

BMR =
$$[\pi_{MA}(d)_i - \pi_{MA}(0)]/[1 - \pi_{MA}(0)].$$

- BMR typically set at values of 1, 5, and 10%.
- The BMDL is computed through a parametric bootstrap. Here the 5th percentile of the bootstrap distribution is used to compute the 95% lower tailed confidence limit estimate on the BMD.

Model Averaging

Model Averaging

- MA seems like a good idea, however we need to know if it works well in practice.
- A simulation study was conducted investigating the behavior of MA.
- 54 true model conditions, using models (1) (9), were used in the simulation.
- Full study described in Wheeler and Bailer (Risk Analysis, *In Press*)

Simulation

- The simulation proceeded by generating hypothetical toxicology experiments with response probability $\pi(d)$.
- With $\pi(d)$ specified by one of the 54 true dose-response curves.
- These experiments consisted of 4 dose group design with doses of 0, 0.25, 0.50, and 1.0.
- n=50 for all dose groups.
- 2000 experiments were generated per true doseresponse curve.
- Bias as well as coverage [i.e., Pr(BMDL ≤ BMD_{true})] was estimated.
- Coverage is reported here.

Simulation

- In each experiment the "average-model" BMD as well as the BMDL was estimated.
- BMRs of 1% and 10% were used to estimate the BMD.
- Two model spaces for averaging were considered.
 - One space consisted of three flexible models: the multistage,
 Weibull and the log-probit model.
 - The second space had seven models that added the probit, logistic, quantal-linear, and quantal-quadratic to the three model space.
- Coverage probability [i.e., Pr(BMDL ≤ BMD_{true})] was estimated across 2000 simulations.
- The nominal coverage level was 95%.
- The simulation took approximately 1 CPU year of computation.

Coverage BMR = 10%

Coverage BMR = 1%

Simulation

- Nominal coverage is reached for most simulation conditions.
- MA fails to reach nominal coverage in the quantal-linear and similar cases.
- It is important to understand why the BMD is mischaracterized in the quantal linear case.
- We study this through investigating the sampling distribution.

Sampling distribution for the quantal-linear model

Average fit for 3-model MA models

Simulation

- The flexibility of the models combined with the sampling distribution introduces bias into the estimation of the dose-response curve.
- The bias carries through in BMD estimation.
- This also may be the cause of the conservative behavior (i.e. coverage > 99%) seen in the quantal-quadratic case.

Simulation

- Improved coverage can be obtained using BCa intervals.
- Other results suggest that MA is superior to picking the best model.
- The results show MA is not a panacea, it is however a step in the right direction.

Simulation

- The results are promising but implementation of this approach is difficult.
- The simulation code has been repackaged to allow users to implement dichotomous dose-response model averaging.
- This is done in a simple MS Windows command prompt program.

Conclusions/Future research

- As mentioned before model averaging is not a panacea.
- As such it does not:
 - Relieve scientists from using their expert judgment.
 - Give automatic license to produce a low dose extrapolations.
 - Remove the need for adequate individual model fit diagnostics.
 - Remove all model uncertainty from the analysis.

Conclusions/Future research

It does:

- Reframe the debate of model choice.
- Produces relatively stable central estimates often independent of a given model being included in the average.
- Point direction to future research.

Conclusions/Future research

Future research:

- Continuous and count data MA software development.
- Extensive Study of a proper suite of models to use in MA.
- Study of experimental designs that might optimize MA performance in terms of estimation and lower bound calculation.

Thank You